NEW TRENDS IN WOOD ADHESIVE TECHNOLOGY

Chimar Hellas S.A.

KATSAMPAS ILIAS
PATRAS, NOVEMBER 5, 2006
CONTENTS

• INTRODUCTION

• FORMALDEHYDE BASED ADHESIVE RESINS

• TRENDS AND REQUIREMENTS IN WOOD PANEL INDUSTRY

• WHAT DOES THE MARKET ASK FROM ADHESIVE PRODUCERS

• SOLUTIONS BY CHIMAR

• NEW IDEAS IN WOOD ADHESIVES
WOOD ADHESIVE TECHNOLOGY:

• The recorded history of bonded wood dates back at least 3,000 years to the Egyptians, and adhesive bonding goes back to early mankind (Skeist, I. and Miron, J. (1990). Introduction to adhesives. In: Skeist, I. (Ed.), *Handbook of Adhesives.* (3rd) Van Nostrand Reinhold, New York, chap 1.)

• The conventional wood-based composite products are typically made with a thermosetting or heat-curing resin or adhesive that holds the lignocellulosic (wood) fibre together.

• Wood composites are grouped into three general categories: plywood, particle and fibre composite

• Commonly used resin–binder systems include phenol-formaldehyde, urea-formaldehyde, melamine-formaldehyde, and isocyanate.

Examples of various wood composite products. From left to right: plywood, OSB, particleboard, MDF, and hardboard.
FORMALDEHYDE BASED ADHESIVE RESINS

FORMALDEHYDE BASED ADHESIVE RESINS REPRESENT BY FAR (>95%) THE BIGGEST VOLUMES WITHIN THE WOOD ADHESIVES

- UF RESIN ADHESIVES: 85%
- MELAMINE BASED RESIN ADHESIVES: 10%
- PHENOL BASED RESIN ADHESIVES: <5%

Condensation resins based on formaldehyde are formed by the reaction of formaldehyde with various chemicals like urea, melamine, phenol or combination of these substances.

<table>
<thead>
<tr>
<th>Monomers:</th>
<th>Table 1. Overview on formaldehyde based glue resins.</th>
</tr>
</thead>
</table>
| Urea | UF
| Melamine | urea-formaldehyde-resin
| Phenol | MF
| Formaldehyde | MUF
| | melamine-urea-formaldehyde
| | mUF
| | melamine fortified UF-resins
| | MF+UF
| | mixture of a MF- and an UF-resin
| | MUPF, PMUF
| | melamine-urea-phenol-formaldehyde resin
| | PF
| | phenol-formaldehyde resin
| | PUF
| | phenol-urea-formaldehyde resin

Chimar Hellas S.A.
ADVANTAGES AND DISADVANTAGES OF THE THREE MAJOR CATEGORIES OF FORMADELHYDE BASED ADHESIVES

<table>
<thead>
<tr>
<th>Property</th>
<th>Type of adhesive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UF</td>
</tr>
<tr>
<td>Price</td>
<td>Low</td>
</tr>
<tr>
<td>Necessary hardening temperature</td>
<td>Low</td>
</tr>
<tr>
<td>Press time</td>
<td>short</td>
</tr>
<tr>
<td>Susceptibility against wood species</td>
<td>High</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Low</td>
</tr>
<tr>
<td>Manipulation</td>
<td>Easy</td>
</tr>
<tr>
<td>Resistance against hydrolysis</td>
<td>No</td>
</tr>
<tr>
<td>Use in humid conditions</td>
<td>No</td>
</tr>
<tr>
<td>Formaldehyde emissions</td>
<td>E_1</td>
</tr>
</tbody>
</table>
THE FORMADEHYDE EMMISSIONS PROBLEM

ACTUAL REQUIREMENTS CONCERNING THE SUBSEQUENT FORMALDEHYDE EMISSIONS

<table>
<thead>
<tr>
<th>BOARD QUALITY</th>
<th>LIMITS OF EMISSIONS ACCORDING TO THE PERFORATOR TEST (EN120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F**</td>
<td>6.5 mg/100g dry board</td>
</tr>
<tr>
<td>F*** (E-ZERO)</td>
<td>2.5-3 mg/100g dry board</td>
</tr>
<tr>
<td>F**** (SUPER E-ZERO)</td>
<td>1.5-2 mg/100g dry board</td>
</tr>
</tbody>
</table>

UF resin

- low resistance against hydrolysis:
- increased stability against hydrolysis:
 - stabilization of the C-N-bonding due to the quasi aromatic ring structure of the melamine
 - slower decrease of the pH in the bond line due to the buffer capacity of melamine

MUF resin

- easily to split

PF resins

- the C-C bonding is very stable against hydrolytic attack
- hydrolytically stable C-C bonding

Chimar Hellas S.A.
TRENDS AND REQUIREMENTS IN WOOD PANEL INDUSTRY

<table>
<thead>
<tr>
<th>Trends and requirements</th>
<th>Options</th>
<th>Offered adhesive solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low cost and cost effective production to survive on the high competition market of wood based panels</td>
<td>- Increased output of the line by shorter press times
- Reduction of board density (substantial savings in wood raw materials costs)
- Reduction the portion of off spec material
- Reduction of the necessary resin consumption</td>
<td>- High reactive systems (UF accelerators)
- Flexible resins for low density boards
- Optimization of the whole production
- Better resin distribution</td>
</tr>
<tr>
<td>Strong competition on the board market</td>
<td>- Cost leader production
- Special products</td>
<td>- Low adhesive prices
- Adhesives for special demands of the board producers</td>
</tr>
<tr>
<td>Reduction of formaldehyde emissions</td>
<td>- Resin systems with low content of formaldehyde
- Formaldehyde free adhesives</td>
<td>- Resin systems for the production of boards with limited formaldehyde emissions</td>
</tr>
</tbody>
</table>
WHAT DOES THE MARKET ASK FROM ADHESIVE PRODUCERS

1. High and constant resin quality

2. For special applications top performance tailor made bonding solutions:
 - Boards for use in humid conditions
 - Boards with lower thickness swelling
 - Fire retardant boards

3. Improvement of their production

4. Alternative raw materials and novel bonding solutions

5. Cost effective adhesives

6. Further decrease in formaldehyde emissions
CHIMAR HELLAS S.A. is an innovating industrial company with manufacturing and research expertise in chemicals and technologies for the resin and wood panel industries.

The company offers a wide range of solutions regarding the wood adhesive industry.

✓ Innovative adhesive resins and additives
(e.g. Specially developed know how's for the production of aminoplastic resins (UF-UMF-MF-MUF-PF) with various polymerization procedures and additives such as formaldehyde scavengers, crosslinking agents, additives for improved humidity resistance)
New adhesive technologies for zero formaldehyde emissions without decreasing the mechanical properties of wood panels

<table>
<thead>
<tr>
<th>Property</th>
<th>Wood panel with conventional resin</th>
<th>Wood panel with CHIMAR E0 resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, Kg/m³</td>
<td>674</td>
<td>670</td>
</tr>
<tr>
<td>Internal bond strength, N/mm²</td>
<td>0,72</td>
<td>0,7</td>
</tr>
<tr>
<td>Bending strength, N/mm²</td>
<td>20,2</td>
<td>20,3</td>
</tr>
<tr>
<td>Water swelling at 100°C for 24 hours, %</td>
<td>13,8</td>
<td>13,7</td>
</tr>
<tr>
<td>Formaldehyde emissions, mg/100g panel</td>
<td>7,5</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Development of new eco-efficient and bio-based adhesives taking into consideration both ecological and cost aspects.
(e.g. TANNIN ADHESIVES - LIGNIN ADHESIVES – SOY PROTEIN ADHESIVES - FORMALDEHYDE SUBSTITUTION WITH FURFURAL)

Chimar Hellas S.A.
NEW IDEAS IN WOOD ADHESIVES?

- Bio-Based products that are not based on oil
- Environmentally friendly product and process (Zero Emissions)
- Stronger bonding to wood
- Alternative curing mechanism (RF, UV)
- Long shelf life
- Reduced energy requirements
- Tolerates wide moisture variations
- Tolerates wide species mix
- Lower application rates
- Ease of application
- Improved long term durability
- Non-Toxic
- Cheap

Chimar Hellas S.A.
Ilias Katsampas
Chemical Engineer, PhD, Msc
R&D department
Chimar Hellas SA

Sofouli 88, 55131 Thessalonici
📞: +30-2310424167, ☏ +30-2310424149
e-mail: office@ari.gr, ikatsamp@ari.gr
www.chimar-hellas.com